sehingga Sin 5xdx = ∫ Sin u 1/5 du Ganti 5x dengan permisalan sebelumnya yaitu u. kemudian subtitusikan dx yaitu 1/5 du. = 1/5 ∫ Sin u du Kemudian lihat bentuk baku integral dari sin yaitu -cos. = - 1/5 cos u Karena sudah diintegralkan maka lambang integralnya hilang dan di tambah + C di akhir jawaban. Aturan Pangkat ). Jika r adalah sebarang bilangan rasional kecuali -1, maka ò x' dx = xr+1 + C r+1 Ø Teorema B : ò sin x dx = - cos x +C ò cos x dx = sin x +C INTEGRAL TAK TENTU ADALAH LINEAR, dimana Dx adalah suatu operator linear. Ini berarti dua hal : 1. 212. Jika pangkat sinus bil.ganjil(m=2k+1), simpan satu faktor sinus dan gunakan sin 2x=1-cos x utk menyatakan faktor yg tersisa dalam kosinus sin2k+1 x cosn x dx = (sin2x)k cosnx sin x dx = (1-cos2x)k cosnx sin x dx kemudian substitusikan u = cosx du= -sin x dx NB : Jika pangkat sinus maupun kosinus Wecan go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral. We have. ∫1 0 dx √1−x2 =sin−1x|1 0 =sin−11−sin−10 = π 2 −0 = π 2. ∫ 0 1 d x 1 − x 2 = sin − 1 x | 0 1 = sin − 1 1 − sin − 1 0 = π 2 − Penyelesaian: Integralkan, mengganti n dengan x, sehingga ¦ f 1 3 2 1 6 n n n dx x ³ f x 1 3 2 1 6 dx x a x ao f ³ 1 3 2 1 6 lim, subtitusi u = x3 +1 dan du = 3x2 dx, sehingga diperoleh : f o f o f o f ³ lim 2 lim 2 (ln ) 1 lim 2 (ln(3 1) ln 2) 2 1 2 3 3 u a u du a a a a a Hasil integral tak hingga (divergen) sehingga deret juga divergen Hasilintegral 2x(5-x) pangkat 3 dx Nooer Nooer Integral 2x(5-x)³ dx = Integral (10x-2x²)³ dx = Integral 10x³-2x^6 dx = Integral 10/3+1 x^3+1 - 2/6+1 x^6+1 + C = Integral 10/4 x⁴ - 2/7 x^7 + C Pertanyaan baru di Matematika. Diketahui f(x) = (3x - 2)(x + 1), nilai dari f(-2) adalah?[tex] \: [/tex] HQPgZCe. $\begingroup$What's the integration of $$\int \sin^5 x \cos^2 x\,dx?$$ Julien44k3 gold badges83 silver badges163 bronze badges asked Feb 3, 2013 at 1949 $\endgroup$ 2 $\begingroup$ Hint Write $$ \sin^5x\cos^2x=\sin^2x^2\cos^2x\sinx. $$ Now use $\cos^2x+\sin^2x=1$ and do the appropriate change of variable. This is the general method to integrate functions of the type $$ \cos^nx\sin^mx $$ when one of the integers $n,m$ is odd. answered Feb 3, 2013 at 1954 JulienJulien44k3 gold badges83 silver badges163 bronze badges $\endgroup$ $\begingroup$ $$ \int \sin^5 x \cos^2x dx $$ $$= \int\sin^2x^2 \cos^2x \sinx dx$$ $$=-\int1 - \cos^2x^2 cos^2x -sinx dx $$ Let $u = \cosx$ $\implies du = -\sinx dx$ $$= -\int1 - u^2² u² du$$ $$= -\int1 - 2u^2 + u^4 u^2 du $$ $$= -\intu^2 - 2u^4+ u^6 du$$ $$= -\left\frac{u^3}{3} - \frac{2u^5}{5} + \frac{u^7}{7}\right + C$$ $$= -u^3\left\frac{1}{3} - \frac{2u^2}{5} +\frac{ u^4}{7}\right + C $$ $$= -\cos^3x \left\frac{1}{3} - \frac{2\cos^2x}{5} + \frac{\cos^4x}{7}\right + C $$ $$= -\cos^3x\frac{15\cos^4x - 42\cos^2x + 35}{105} + C $$ answered Oct 21, 2015 at 1432 $\endgroup$ 1 $\begingroup$ Using trig identities, you can show that $$\sin ^5x \cos ^2x=\frac{5 \sin x}{64}+\frac{1}{64} \sin 3 x-\frac{3}{64} \sin 5 x+\frac{1}{64} \sin 7 x$$ To do this, first use the "Power-reduction formulas" to reduce to get $$\sin^5x=\frac{10 \sin x - 5 \sin 3 x+ \sin 5 x}{16}$$ $$\cos^2x=\frac{1 + \cos 2 x}{2}$$ And then use $$\cos 2 x \sin nx = {{\sinn+2x - \sinn-2x} \over 2}$$ answered Feb 3, 2013 at 2000 gold badges81 silver badges139 bronze badges $\endgroup$ 5 You must log in to answer this question. Not the answer you're looking for? Browse other questions tagged . The equation can be written as On separating the integrals As we know, dcos x = - sin x dx Therefore, put cos x = t and dt = - sin x dx in above The answer is =-1/5cos^5x+2/3cos^3x-cosx+C Explanation We need sin^2x+cos^2x=1 The integral is intsin^5dx=int1-cos^2x^2sinxdx Perform the substitution u=cosx, =>, du=-sinxdx Therefore, intsin^5dx=-int1-u^2^2du =-int1-2u^2+u^4du =-intu^4du+2intu^2du-intdu =-u^5/5+2u^3/3-u =-1/5cos^5x+2/3cos^3x-cosx+C \bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] ▭\\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radianas} \mathrm{Graus} \square! % \mathrm{limpar} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Inscreva-se para verificar sua resposta Fazer upgrade Faça login para salvar notas Iniciar sessão Mostrar passos Reta numérica Exemplos x^{2}-x-6=0 -x+3\gt 2x+1 reta\1,\2,\3,\1 fx=x^3 provar\\tan^2x-\sin^2x=\tan^2x\sin^2x \frac{d}{dx}\frac{3x+9}{2-x} \sin^2\theta' \sin120 \lim _{x\to 0}x\ln x \int e^x\cos xdx \int_{0}^{\pi}\sinxdx \sum_{n=0}^{\infty}\frac{3}{2^n} Mostrar mais Descrição Resolver problemas algébricos, trigonométricos e de cálculo passo a passo step-by-step integral sin^5x pt Postagens de blog relacionadas ao Symbolab Practice Makes Perfect Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want... Read More Digite um problema Salve no caderno! Iniciar sessão \bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] ▭\\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radianas} \mathrm{Graus} \square! % \mathrm{limpar} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Inscreva-se para verificar sua resposta Fazer upgrade Faça login para salvar notas Iniciar sessão Mostrar passos Reta numérica Exemplos \int \int \frac{1}{x}dxdx \int_{0}^{1}\int_{0}^{1}\frac{x^2}{1+y^2}dydx \int \int x^2 \int_{0}^{1}\int_{0}^{1}xy\dydx Mostrar mais Descrição Resolver integrais duplas passo a passo double-integrals-calculator \int\sin^{5}\leftx\rightdx pt Postagens de blog relacionadas ao Symbolab High School Math Solutions – Polynomial Long Division Calculator Polynomial long division is very similar to numerical long division where you first divide the large part of the... Read More Digite um problema Salve no caderno! Iniciar sessão

integral sin pangkat 5 x dx